TidakLah mungkin bagi matahari mendapatkan buLan..dan maLampun tidak dapat mendahului siang. Dan masing-masing beredar pada garis edarnya

Sabtu, 02 Juni 2012

Teori Dasar Listrik

Teori Dasar Listrik
1. Arus Listrik

adalah mengalirnya elektron secara terus menerus dan berkesinambungan pada konduktor akibat perbedaan jumlah elektron pada beberapa lokasi yang jumlah elektronnya tidak sama. satuan arus listrik adalah Ampere. 

Arus listrik bergerak dari terminal positif (+) ke terminal negatif (-), sedangkan aliran listrik dalam kawat logam terdiri dari aliran elektron yang bergerak dari terminal negatif (-) ke terminal positif(+), arah arus listrik dianggap berlawanan dengan arah gerakan elektron.

Gambar 1. Arah arus listrik dan arah gerakan elektron.
“1 ampere arus adalah mengalirnya elektron sebanyak 624x10^16 (6,24151 × 10^18) atau sama dengan 1 Coulumb per detik melewati suatu penampang konduktor” 
Formula arus listrik adalah: 

I = Q/t (ampere)

Dimana:
I = besarnya arus listrik yang mengalir, ampere
Q = Besarnya muatan listrik, coulomb
t = waktu, detik

2. Kuat Arus Listrik

Adalah arus yang tergantung pada banyak sedikitnya elektron bebas yang pindah melewati suatu penampang kawat dalam satuan waktu.

Definisi : “Ampere adalah satuan kuat arus listrik yang dapat memisahkan 1,118 milligram perak dari nitrat perak murni dalam satu detik”.

Rumus – rumus untuk menghitung banyaknya muatan listrik, kuat arus dan waktu:

Q = I x t
I = Q/t
t = Q/I

Dimana :
Q = Banyaknya muatan listrik dalam satuan coulomb
I = Kuat Arus dalam satuan Amper.
t = waktu dalam satuan detik.

“Kuat arus listrik biasa juga disebut dengan arus listrik”

“muatan listrik memiliki muatan positip dan muatan negatif. Muatan positip dibawa oleh proton, dan muatan negatif dibawa oleh elektro. Satuan muatan ”coulomb (C)”, muatan proton +1,6 x 10^-19C, sedangkan muatan elektron -1,6x 10^-19C. Muatan yang bertanda sama saling tolak menolak, muatan bertanda berbeda saling tarik menarik”
3. Rapat Arus

Difinisi :
“rapat arus ialah besarnya arus listrik tiap-tiap mm² luas penampang kawat”.

Gambar 2. Kerapatan arus listrik.
Arus listrik mengalir dalam kawat penghantar secara merata menurut luas penampangnya. Arus listrik 12 A mengalir dalam kawat berpenampang 4mm², maka kerapatan arusnya 3A/mm² (12A/4 mm²), ketika penampang penghantar mengecil 1,5mm², maka kerapatan arusnya menjadi 8A/mm² (12A/1,5 mm²).

Kerapatan arus berpengaruh pada kenaikan temperatur. Suhu penghantar dipertahankan sekitar 300°C, dimana kemampuan hantar arus kabel sudah ditetapkan dalam tabel Kemampuan Hantar Arus (KHA).

Tabel 1. Kemampuan Hantar Arus (KHA)
Berdasarkan tabel KHA kabel pada tabel diatas, kabel berpenampang 4 mm², 2 inti kabel memiliki KHA 30A, memiliki kerapatan arus 8,5A/mm². Kerapatan arus berbanding terbalik dengan penampang penghantar, semakin besar penampang penghantar kerapatan arusnya mengecil.

Rumus-rumus dibawah ini untuk menghitung besarnya rapat arus, kuat arus dan penampang kawat:

J = I/A
I = J x A
A = I/J

Dimana:
J = Rapat arus [ A/mm²]
I = Kuat arus [ Amp]
A = luas penampang kawat [ mm²]


4. Tahanan dan Daya Hantar Penghantar

Penghantar dari bahan metal mudah mengalirkan arus listrik, tembaga dan aluminium memiliki daya hantar listrik yang tinggi. Bahan terdiri dari kumpulan atom, setiap atom terdiri proton dan elektron. Aliran arus listrik merupakan aliran elektron. Elektron bebas yang mengalir ini mendapat hambatan saat melewati atom sebelahnya. Akibatnya terjadi gesekan elektron denganatom dan ini menyebabkan penghantar panas. Tahanan penghantar memiliki sifat menghambat yang terjadi pada setiap bahan.

Tahanan didefinisikan sebagai berikut :

“1 Ω (satu Ohm) adalah tahanan satu kolom air raksa yang panjangnya 1063 mm dengan penampang 1 mm² pada temperatur 0° C"

Daya hantar didefinisikan sebagai berikut:

“Kemampuan penghantar arus atau daya hantar arus sedangkan penyekat atau isolasi adalah suatu bahan yang mempunyai tahanan yang besar sekali sehingga tidak mempunyai daya hantar atau daya hantarnya kecil yang berarti sangat sulit dialiri arus listrik”.

Rumus untuk menghitung besarnya tahanan listrik terhadap daya hantar arus:

R = 1/G
G = 1/R

Dimana :
R = Tahanan/resistansi [ Ω/ohm]
G = Daya hantar arus /konduktivitas [Y/mho] 

Gambar 3. Resistansi Konduktor
Tahanan penghantar besarnya berbanding terbalik terhadap luas penampangnya dan juga besarnya tahanan konduktor sesuai hukum Ohm.

“Bila suatu penghantar dengan panjang l , dan diameter penampang q serta tahanan jenis ρ (rho), maka tahanan penghantar tersebut adalah” :

R = ρ x l/q

Dimana :
R = tahanan kawat [ Ω/ohm]
l = panjang kawat [meter/m] l
ρ = tahanan jenis kawat [Ωmm²/meter]
q = penampang kawat [mm²]

faktot-faktor yang mempengaruhi nilai resistant atau tahanan, karena tahanan suatu jenis material sangat tergantung pada :
• panjang penghantar.
• luas penampang konduktor.
• jenis konduktor .
• temperatur.

"Tahanan penghantar dipengaruhi oleh temperatur, ketika temperatur meningkat ikatan atom makin meningkat akibatnya aliran elektron terhambat. Dengan demikian kenaikan temperatur menyebabkan kenaikan tahanan penghantar"


5. potensial atau Tegangan

potensial listrik adalah fenomena berpindahnya arus listrik akibat lokasi yang berbeda potensialnya. dari hal tersebut, kita mengetahui adanya perbedaan potensial listrik yang sering disebut “potential difference atau perbedaan potensial”. satuan dari potential difference adalah Volt.

“Satu Volt adalah beda potensial antara dua titik saat melakukan usaha satu joule untuk memindahkan muatan listrik satu coulomb”

Formulasi beda potensial atau tegangan adalah:

V = W/Q [volt]

Dimana:
V = beda potensial atau tegangan, dalam volt
W = usaha, dalam newton-meter atau Nm atau joule
Q = muatan listrik, dalam coulomb


RANGKAIAN LISTRIK

Pada suatu rangkaian listrik akan mengalir arus, apabila dipenuhi syarat-syarat sebagai berikut :
1. Adanya sumber tegangan
2. Adanya alat penghubung
3. Adanya beban

Gambar 4. Rangkaian Listrik.
Pada kondisi sakelar S terbuka maka arus tidak akan mengalir melalui beban . Apabila sakelar S ditutup maka akan mengalir arus ke beban R dan Ampere meter akan menunjuk. Dengan kata lain syarat mengalir arus pada suatu rangkaian harus tertutup.

1. Cara Pemasangan Alat Ukur.
Pemasangan alat ukur Volt meter dipasang paralel dengan sumber tegangan atau beban, karena tahanan dalam dari Volt meter sangat tinggi. Sebaliknya pemasangan alat ukur Ampere meter dipasang seri, hal inidisebabkan tahanan dalam dari Amper meter sangat kecil.

“alat ukur tegangan adalah voltmeter dan alat ukur arus listrik adalah amperemeter”
2. Hukum Ohm 
Pada suatu rangkaian tertutup, Besarnya arus I berubah sebanding dengan tegangan V dan berbanding terbalik dengan beban tahanan R, atau dinyatakan dengan Rumus :

I = V/R
V = R x I
R = V/I

Dimana;
I = arus listrik, ampere
V = tegangan, volt
R = resistansi atau tahanan, ohm

• Formula untuk menghtung Daya (P), dalam satuan watt adalah:
P = I x V
P = I x I x R
P = I² x R

3. HUKUM KIRCHOFF 

Pada setiap rangkaian listrik, jumlah aljabar dari arus-arus yang bertemu di satu titik adalah nol (ΣI=0).

Gambar 5. loop arus“ KIRChOFF “ 
Jadi:
I1 + (-I2) + (-I3) + I4 + (-I5 ) = 0
I1 + I4 = I2 + I3 + I5 

Prinsip/Cara Kerja Teropong Prisma, bintang, Panggung dan Bumi


Teropng prisma teridiri atas 2 bagian lensa cembung (Sebagian lensa okuler dan lensa objektif), dan juga sepasang dua prisma kaca siku-siku sama kaki, Sepasang prisma yang diletakan saling berhadapan, berfungsi untuk membelokan arah cahaya serta membalikan bayangan.

Bayangan yang berbentuk sifat objektif bersifat nyata, dan diperkecil serta terbalik, bayangan ini dibalikan oleh sepasang prisma siku-siku tadi, sehingga bayangan akhir terlihat maya, diperbesar, dan tegak. perbesaran yang diperolah dengan memakai teropong prisma samadengan teropong bumi.

Keuntungan praktis dari teropong prisma sama dengan teropong bumi :
  1. Menghasilkan bayangan yang terang, karena berkas cahaya dipantulkan sempurna oleh bidang-bidang prisma.
  2. Dapat dibuat sangat pendek sekalai, Karena sinarnya bolak-balik 3x melalui jarak yang sama dan di pantulkan sebanyak 4x oleh 2 prisma.
  3. Daya stereoskopis dperbesar, 2mata dapat melihat secara besamaan.
  4. Dengan adanya prisma arah cahaya yang telah dibalikan sehingga terlihat bayangan akhir bersifat maya, diperbesar dan tegak.


Cara Kerja Teropong
Menurut fungsi dari teropong, Teropong dibagi menjadi 3 yaitu:
1. 
teropong bumi 
2. 
teropong bintang
3. teropong panggung


Prinsip utama pembentukan bayangan pada teropong adalah: lensa obyektif membentuk bayangan nyata dari sebuah obyek jauh dan lensa okuler berfungsi sebagai lup. Dengan demikian cara mengamati obyek apakah mau dengan cara berakomodasi maupun tidak berakomodasi tergantung dari posisi lensa okulernya. Oleh karena itu jarak antara obyektif dan okuler dapat diubah-ubah. Panjang teropong adalah jarak antara lensa obyektif dan lensa okulernya.

Teropong Bintang
Teropong bintang digunakan untuk mengamati obyek-obyek yang ada di langit (bintang). Teropong bintang terdiri dari sebuah lensa cembung yang berfungsi sebagai lensa obyektif dengan diameter dan jarak fokus besar, sedangkan okulernya adalah sebuah lensa cembung dengan jarak fokus pendek. Bagaimanakah pembentukan bayangan pada teropong dan bagaimana sifat bayangannya? Ikutilah kegiatan berikut ini.

Teropong Bumi

Teropong bumi digunakan untuk mengamati obyek-obyek yang jauh dipermukaan bumi. Teropong ini akan menghasilkan bayangan yang nampak lebih jelas, lebih dekat dan tidak terbalik. Teropong bumi terdiri dari tiga lensa positif dan salah satunya berfungsi sebagai pembalik bayangan. Pembentukan bayangan pada alat ini dapat dilihat dalam gambar berikut.

Panjang teropong bumi adalah panjang fokus lensa obyektif ditambah 2 kali jarak fokus lensa pembalik dan panjang fokus lensa okuler. Dengan rumus : d = fOb + 4 fp + fOk




Prinsip/cara kerja teropong panggung : sinar sejajar yang masuk ke lensa obyektif membentuk bayangan nyata tepat di titik fokus obyektif. Bayangan ini akan berfungsi sebagai benda maya bagi lensa okuler. Dan oleh lensa okuler akan dibentuk bayangan yang dapat dilihat oleh mata.

Pada pengamatan tanpa berakomodasi maka panjang teropong adalah :

d = f (Ob) – f (Ok)

d = panjang teropong dalam meter
(Ob) = panjang fokus lensa obyektif dalam meter
(Ok) = panjang fokus lensa okuler dalam meter

SPEKTRUM ELEKTROMAGNETIK


Spektrum elektromagnetik adalah rentang dari semua frekuensi yang mungkin dari radiasi elektromagnetik .
Spektrum elektromagnetik
Spektrum elektromagnetik
"spektrum elektromagnetik" dari suatu objek adalah distribusi karakteristik dari radiasi elektromagnetik yang dipancarkan atau diserap oleh benda tertentu.

Spektrum elektromagnetik memanjang dari frekuensi rendah digunakan untuk, radio komunikasi untuk radiasi gamma di pendekpanjang gelombang akhir (frekuensi tinggi), sehingga meliputi panjang gelombang dari ribuan kilometer ke sebuah fraksi dari ukuran sebuah atom . Adalah untuk alasan ini bahwa spektrum elektromagnetik sangat dipelajari untuk tujuan spektroskopi untuk menandai materi.Batas untuk panjang gelombang panjang adalah ukuran dari alam semesta itu sendiri, sementara ia berpikir bahwa batas panjang gelombang pendek adalah di sekitar Planck panjang, meskipun pada prinsipnya spektrum adalah tak terbatas dan terus menerus .

Sejarah Spektrum elektromagnetik Untuk sebagian besar dari sejarah, cahaya adalah bagian hanya dikenal dari spektrum elektromagnetik. The Yunani kuno diakui bahwa cahaya perjalanan di garis lurus dan mempelajari beberapa sifat-sifat itu, termasuk refleksi dan refraksi . Selama bertahun-tahun studi tentang cahaya terus dan selama abad 16 dan 17 ada teori yang saling bertentangan yang dianggap baik sebagai gelombang cahaya atau partikel. Ini pertama kali terkait dengan elektromagnetisme pada tahun 1845 ketika Michael Faraday melihat bahwa cahaya merespon medan magnet. Penemuan pertama dari gelombangelektromagnetik selain cahaya datang pada tahun 1800, ketika William Herschelmenemukan cahaya inframerah. Dia mempelajari suhu warna yang berbeda dengan memindahkan termometer melalui cahaya dipisahkan oleh sebuah prisma. Dia menyadari bahwa suhu terpanas di luar merah. Dia berteori bahwa ada 'cahaya' bahwa Anda tidak bisa melihat.Tahun berikutnya, Johann Ritter bekerja di ujung lain dari spektrum dan menyadari bahwa ada 'sinar kimia' yang berperilaku mirip, tetapi berada di luar, sinar cahaya ungu terlihat. Mereka kemudian berganti nama menjadi radiasi ultraviolet. Selama 1860-an James Maxwellsedang belajar medan elektromagnetik dan menyadari bahwa mereka melakukan perjalanan di sekitar kecepatan cahaya. Ia mengembangkan empat diferensial parsial persamaan untuk menjelaskan korelasi ini. Persamaan ini diprediksi banyak frekuensi gelombang elektromagnetik perjalanan pada kecepatan cahaya. Mencoba untuk membuktikan persamaan atau teori Maxwell, pada tahun 1886 Heinrich Hertz dibangun suatu alat untuk menghasilkan dan mendeteksi gelombang radio. Dia mampu untuk mengamati bahwa mereka melakukan perjalanan dengan kecepatan cahaya dan bisa menjadi baik dipantulkan dan dibiaskan. Dalam sebuah percobaan kemudian ia juga diproduksi dan diukur gelombang mikro. Gelombang ini baru membuka jalan bagi penemuan seperti telegraf nirkabel dan radio . Pada tahun 1895 Wilhelm Röntgen melihat jenis baru radiasi yang dipancarkan selama percobaan. Dia menyebut x-ray dan menemukan mereka mampu melakukan perjalanan melalui bagian-bagian tubuh manusia tetapi tercermin oleh materi padat seperti tulang. Sebelum banyak kegunaan lama ditemukan untuk mereka di bidang kedokteran . Bagian terakhir dari spektrum elektromagnetik yang diisi dengan penemuansinar gamma . Pada tahun 1900 Paul Villard sedang belajar radioaktivitas. Dia pertama kali mengira mereka mirip dengan partikel alpha dan partikel beta. Namun, pada tahun 1910 Ernest Rutherford diukur panjang gelombang mereka dan menemukan bahwa mereka adalah gelombang elektromagnetik.

Rentang Spektrum

Gelombang elektromagnetik biasanya dijelaskan oleh salah satu dari tiga sifat berikut fisik: frekuensi f, panjang gelombang λ , atau foton energi e. Frekuensi berkisar dari 2,4 × 10 23 Hz (1 GeV sinar gamma) ke lokal frekuensi plasma dari medium antarbintang terionisasi (~ 1 kHz). Panjang gelombang berbanding terbalik dengan frekuensi gelombang, [2] sehingga sinar gamma memiliki panjang gelombang yang sangat pendek yang pecahan dari ukuran atom , sedangkan panjang gelombang dapat selama alam semesta. Energi foton berbanding lurus dengan frekuensi gelombang, sehingga sinar gamma memiliki energi tertinggi (sekitar satu miliar volt elektron ) dan gelombang radio memiliki energi yang sangat rendah (sekitar Femto elektron volt). Hubungan ini digambarkan oleh persamaan berikut:
Spektrum elektromagnetik
 persamaan spektrum elektromagnetik
dimana:
  • c = 299.792.458 m / s adalah kecepatan cahaya dalam vakum dan
  • h = 6,626 0 68 9 6 (33) × 10 -34 J s = 4,135 6 67 3 3 ​​(10) × 10 -15 eV s adalah konstanta Planck.

Setiap kali gelombang elektromagnetik ada dalam media dengan materi , panjang gelombang mereka menurun. Panjang gelombang radiasi elektromagnetik, tidak peduli apa yang sedang mereka bepergian melalui, biasanya dikutip dalam hal panjang gelombang vakum, meskipun hal ini tidak selalu dinyatakan secara eksplisit.

Umumnya, radiasi EM diklasifikasikan oleh panjang gelombang ke gelombang radio , microwave , Terahertz (atau sub-milimeter) radiasi, inframerah , maka daerah tampak kita lihat sebagai cahaya,ultraviolet , sinar-X dan sinar gamma . Perilaku radiasi EM tergantung pada panjang gelombang. Ketika radiasi EM berinteraksi dengan atom dan molekul tunggal, perilakunya juga tergantung pada jumlah energi per kuantum (foton) yang dibawanya.

Spektroskopi dapat mendeteksi sebuah wilayah yang lebih luas dari spektrum EM dari kisaran terlihat dari 400 nm sampai 700 nm. Sebuah spektroskop laboratorium umum dapat mendeteksi panjang gelombang dari 2 nm sampai 2500 nm. Informasi rinci tentang sifat fisik dari objek, gas, atau bahkan bintang dapat diperoleh dari jenis perangkat. Spectroscopes banyak digunakan dalam astrofisika .Sebagai contoh, banyak hidrogen atom memancarkan satu gelombang radio foton yang memiliki panjang gelombang 21,12 cm. Juga, frekuensi 30 Hz dan di bawah dapat diproduksi oleh dan penting dalam studi nebula bintang tertentu [8] dan frekuensi setinggi 2,9 10 27 Hz telah terdeteksi dari sumber astrofisika.

Alasan
Radiasi elektromagnetik berinteraksi dengan materi dengan cara yang berbeda di berbagai bagian dari spektrum. Jenis interaksi dapat begitu berbeda yang tampaknya dibenarkan untuk merujuk kepada berbagai jenis radiasi. Pada saat yang sama, ada sebuah kontinum yang berisi semua "jenis" dari radiasi elektromagnetik. Jadi kita lihat spektrum, tetapi membaginya berdasarkan interaksi yang berbeda dengan materi.
Daerah spektrumUtama interaksi dengan materi
RadioKolektif osilasi dari pembawa muatan dalam bahan massal ( plasma osilasi ). Sebuah contoh akan osilasi elektron dalam sebuah antena .
Microwave melalui jauhinframerahPlasma osilasi, rotasi molekul
Dekat inframerahMolekul getaran, plasma osilasi (dalam logam saja)
TerlihatElektron molekul eksitasi (termasuk molekul pigmen yang ditemukan dalam retina manusia), plasma osilasi (dalam logam saja)
UltravioletEksitasi elektron valensi molekul dan atom, termasuk pengusiran elektron ( efek fotolistrik )
Sinar-XEksitasi dan ejeksi elektron atom inti, hamburan Compton (untuk nomor atom rendah)
Sinar gammaEnergik ejeksi elektron inti dalam unsur-unsur berat, Compton hamburan (untuk semua nomor atom), eksitasi dari inti atom, termasuk pemisahan inti
Energi tinggi sinar gammaPenciptaan partikel-antipartikel pasang . Pada energi yang sangat tinggi sebuah foton tunggal dapat membuat mandi energi tinggi partikel dan antipartikel pada interaksi dengan materi.

Jenis Radiasi

Radiasi gammaJenis-jenis radiasi elektromagnetik secara luas diklasifikasikan ke dalam kelas berikut:

Spektrum elektromagnetik
Spektrum elektromagnetik
  1. Radiasi sinar-X
  2. Ultraviolet radiasi
  3. Terlihat radiasi
  4. Inframerah radiasi
  5. Microwave radiasi
  6. Gelombang radio
Klasifikasi ini masuk dalam urutan meningkatnya panjang gelombang, yang merupakan karakteristik dari jenis radiasi. Sementara, secara umum, skema klasifikasi akurat, dalam kenyataannya sering ada beberapa tumpang tindih antara jenis tetangga energi elektromagnetik.Sebagai contoh, gelombang radio SLF pada 60 Hz dapat diterima dan dipelajari oleh para astronom, atau mungkin selama survei dilakukan di sepanjang kabel sebagai tenaga listrik, meskipun yang terakhir adalah, dalam arti sempit, tidak radiasi elektromagnetik sama sekali (lihatlapangan dekat dan jauh ) ini perbedaan antara sinar-X dan sinar gamma didasarkan pada sumber-sumber: sinar gamma adalah foton yang dihasilkan dari peluruhan nuklir atau proses nuklir dan subnuclear / partikel lain, sedangkan sinar-X dihasilkan oleh elektronik transisi yang sangat energik elektron atom dalam . Secara umum, transisi nuklir jauh lebih energik dari transisi elektronik, sehingga gamma-ray lebih energik dari X-ray, tapi ada beberapa yang tidak. Dengan analogi untuk transisi elektronik, atom muonic transisi juga mengatakan untuk menghasilkan sinar-X, meskipun energi mereka dapat melebihi 6 megaelectronvolts (0,96 PJ), sedangkan ada banyak (77 diketahui kurang dari 10 keV (1,6 FJ )) rendah energi transisi nuklir (misalnya, 7,6 eV (1,22 AJ) transisi nuklir thorium -229), dan, meskipun satu juta kali lipat kurang energik dari beberapa muonic sinar-X, foton dipancarkan masih disebut sinar gamma karena asal nuklir mereka.
Juga, wilayah spektrum dari radiasi elektromagnetik tertentu adalah kerangka acuan yang bergantung (pada account dari pergeseran Doppleruntuk cahaya), sehingga radiasi EM yang seorang pengamat akan mengatakan dalam satu daerah spektrum bisa tampil untuk seorang pengamat bergerak dengan sebagian besar dari kecepatan cahaya sehubungan dengan yang pertama berada di bagian lain dari spektrum.Sebagai contoh, mempertimbangkan latar belakang gelombang mikro kosmik . Ini diproduksi, ketika materi dan radiasi dipisahkan, oleh de-eksitasi atom hidrogen pada keadaan dasar. Foton ini berasal dari Lyman seri transisi, menempatkan mereka dalam ultraviolet (UV) bagian dari spektrum elektromagnetik. Sekarang radiasi ini telah mengalami cukup kosmologis pergeseran merah untuk memasukkannya ke dalam wilayah microwave spektrum untuk pengamat bergerak perlahan (dibandingkan dengan kecepatan cahaya) terhadap kosmos. Namun, untuk partikel yang bergerak mendekati kecepatan cahaya, radiasi ini akan menjadi biru bergeser dalam bingkai istirahat mereka. Tertinggi energi proton sinar kosmik bergerak seperti itu, dalam bingkai istirahat mereka, radiasi ini blueshifted untuk energi tinggi sinar gamma, yang berinteraksi dengan proton untuk menghasilkan terikat quark-antiquark pasang ( pion ). Ini adalah sumber dari batas GZK .

Frekuensi radio

Radio gelombang umumnya dimanfaatkan oleh antena dengan ukuran yang sesuai (menurut prinsip resonansi ), dengan panjang gelombang berkisar dari ratusan meter menjadi sekitar satu milimeter.Mereka digunakan untuk transmisi data, melalui modulasi . televisi , ponsel , jaringan nirkabel , dan radio amatir gelombang radio digunakan semua. Penggunaan spektrum radio diatur oleh banyak pemerintah melalui alokasi frekuensi .
Gelombang radio dapat dibuat untuk membawa informasi dengan memvariasikan kombinasi amplitude, frekuensi, dan fase dari gelombang dalam pita frekuensi. Ketika radiasi EM impinges pada sebuah konduktor , maka pasangan untuk konduktor, perjalanan sepanjang itu, dan menginduksi arus listrik pada permukaan konduktor bahwa dengan menarik elektron dari bahan melakukan. Efek ini ( efek kulit ) digunakan dalam antena.

Gelombang mikro

Spektrum elektromagnetik
Plot transmitansi atmosfer bumi (atau opacity) 
untuk berbagai panjang gelombang radiasi elektromagnetik.
Pemanasan volumetrik, seperti yang digunakan oleh oven microwave , transfer energi melalui materi elektromagnetik, bukan sebagai fluks panas termal. Keuntungan dari ini adalah pemanasan yang lebih seragam dan waktu pemanasan dikurangi; microwave dapat memanaskan material dalam kurang dari 1% dari waktu metode pemanasan konvensional.
Bila aktif, microwave oven rata cukup kuat untuk menyebabkan gangguan pada jarak dekat dengan medan elektromagnetik yang buruk terlindung seperti yang ditemukan pada perangkat medis mobile dan elektronik konsumen murah.

Terahertz radiasi

Radiasi Terahertz adalah wilayah spektrum antara inframerah jauh dan gelombang mikro. Sampai saat ini, rentang jarang dipelajari dan beberapa sumber ada untuk energi gelombang mikro pada akhir yang tinggi dari band (sub-milimeter gelombang atau yang disebut gelombang Terahertz ), tapi aplikasi seperti pencitraan dan komunikasi sekarang muncul. Para ilmuwan juga mencari untuk menerapkan teknologi Terahertz di angkatan bersenjata, di mana frekuensi tinggi gelombang mungkin diarahkan pada pasukan musuh untuk melumpuhkan peralatan elektronik mereka.

Inframerah radiasi

Para inframerah bagian dari spektrum elektromagnetik mencakup rentang dari sekitar 300 GHz (1 mm) hingga 400 THz (750 nm). Hal ini dapat dibagi menjadi tiga bagian:
  • Inframerah-jauh, dari 300 GHz (1 mm) sampai 30 THz (10 pM). Bagian bawah kisaran ini juga dapat disebut microwave. Radiasi ini biasanya diserap oleh apa yang disebut mode rotasi dalam fase gas molekul, dengan gerakan molekul dalam cairan, dan dengan fonon dalam padatan. Air di atmosfer bumi menyerap begitu kuat dalam kisaran ini yang mampu membuat suasana di efek buram.Namun, ada rentang panjang gelombang tertentu ("jendela") dalam rentang buram yang memungkinkan transmisi parsial, dan dapat digunakan untuk astronomi. Kisaran panjang gelombang dari sekitar 200 pM sampai beberapa mm sering disebut sebagai "sub-milimeter" dalam astronomi , sisakan jauh inframerah untuk panjang gelombang di bawah 200 pM.
  • Mid-inframerah, 30-120 THz (10-2,5 pM). Benda panas ( hitam-tubuh radiator) dapat memancarkan sangat dalam rentang ini. Hal ini diserap oleh getaran molekul, dimana atom yang berbeda dalam suatu molekul bergetar sekitar posisi keseimbangan mereka. Rentang ini kadang-kadang disebut sebagai daerah sidik jari, sejak pertengahan inframerah penyerapan spektrum senyawa adalah sangat spesifik untuk senyawa itu.
  • Dekat-inframerah, 120-400 THz (2.500 menjadi 750 nm). Proses fisik yang relevan untuk kisaran ini sama dengan yang untuk cahaya tampak.

Terlihat radiasi (cahaya)

Di atas inframerah pada frekuensi datang cahaya tampak . Ini adalah rentang di mana matahari dan bintang memancarkan sebagian besar radiasi mereka dan spektrum bahwa mata manusia adalah yang paling sensitif untuk. Cahaya tampak (dan dekat-inframerah cahaya) biasanya diserap dan dipancarkan oleh elektron dalam molekul dan atom yang bergerak dari satu tingkat energi yang lain. Lampu kita lihat dengan mata kita benar-benar merupakan sebagian kecil dari spektrum elektromagnetik. Sebuah pelangi menunjukkan bagian (terlihat) optik dari spektrum elektromagnetik; inframerah (jika Anda bisa melihatnya) akan terletak hanya di luar sisi merah pelangi dengan ultraviolet muncul hanya di luar ujung ungu.
Radiasi elektromagnetik dengan panjang gelombang antara 380 nm dan 760 nm (790-400 Terahertz) terdeteksi oleh mata manusia dan dianggap sebagai cahaya tampak. Panjang gelombang lain, terutama di dekat inframerah (lebih dari nm 760) dan ultraviolet (lebih pendek dari 380 nm) juga kadang-kadang disebut sebagai cahaya, terutama ketika visibilitas ke manusia tidak relevan. Cahaya putih adalah kombinasi dari lampu panjang gelombang yang berbeda dalam spektrum terlihat. Melewati cahaya putih melalui sebuah prisma perpecahan itu ke dalam beberapa warna cahaya diamati dalam spektrum terlihat antara 400 nm dan 780 nm.
Jika radiasi memiliki frekuensi di daerah tampak dari spektrum EM mencerminkan dari sebuah objek, katakanlah, semangkuk buah, dan kemudian menyerang mata kita, hasil ini dalam kita persepsi visual dari adegan. Sistem visual otak kita memproses banyak frekuensi tercermin ke dalam nuansa yang berbeda dan warna, dan melalui fenomena psikofisik yang tidak sepenuhnya dipahami, kebanyakan orang memandang semangkuk buah.
Pada panjang gelombang paling, bagaimanapun, informasi yang dibawa oleh radiasi elektromagnetik tidak langsung terdeteksi oleh indera manusia. Sumber alami menghasilkan radiasi EM di seluruh spektrum, dan teknologi kita juga dapat memanipulasi berbagai panjang gelombang. Serat optik mentransmisikan cahaya itu, meskipun tidak selalu di bagian terlihat spektrum, dapat membawa informasi. Modulasi ini mirip dengan yang digunakan dengan gelombang radio.

Sinar ultraviolet

Spektrum elektromagnetik
Jumlah penetrasi relatif UV
untuk ketinggian di bumi 
ozon
Menjadi sangat energik, sinar UV dapat memutuskan ikatan kimia, membuat molekul yang luar biasa reaktif. Sunburn , misalnya, disebabkan oleh efek mengganggu dari radiasi UV pada kulit sel , yang merupakan penyebab utama kanker kulit . Sinar UV diperbaiki lagi dapat merusak kompleks DNA molekul dalam sel-sel memproduksi dimer timin membuatnya menjadi sangat ampuh mutagen . Matahari memancarkan sejumlah besar radiasi UV, yang dapat berpotensi mengubah Bumi menjadi gurun tandus. Namun, sebagian besar diserap oleh atmosfer lapisan ozon sebelum mencapai permukaan. Kisaran yang lebih tinggi UV (UV vakum) diserap oleh diatomik sederhana oksigen di udara. UV dalam kisaran ini (di sebelah sinar-X) adalah cabable bahkan atom pengion (lihat efek fotolistrik ), sehingga bahkan lebih sangat mengubah perilaku fisik mereka.

Sinar-X

Setelah UV datang sinar-X , yang, seperti rentang atas UV juga pengion. Namun, karena energi mereka lebih tinggi, sinar-X juga dapat berinteraksi dengan materi dengan cara efek Compton . Hard sinar-X memiliki panjang gelombang lebih pendek dari lembut sinar-X. Ketika mereka dapat melewati zat yang paling, sinar-X dapat digunakan untuk 'melihat melalui' objek, penggunaan yang paling menonjol menjadi diagnostik gambar sinar-X dalam pengobatan (proses yang dikenal sebagai radiografi ), serta untuk fisika energi tinggi dan astronomi. Bintang neutron dan disk akresi di sekitar lubang hitam memancarkan sinar-X, yang memungkinkan kita untuk belajar mereka. Sinar-X yang dilepaskan oleh bintang-bintang dan sangat dipancarkan oleh beberapa jenis nebula.

Sinar gamma

Setelah hard sinar-X datang sinar gamma , yang ditemukan oleh Paul Villard pada tahun 1900. Ini adalah yang paling energik foton , tidak memiliki batas bawah ditetapkan untuk panjang gelombang mereka. Mereka berguna untuk para astronom dalam penelitian energi tinggi objek atau daerah, dan menemukan digunakan dengan berkat fisikawan untuk kemampuan penetrasi dan produksi mereka dari radioisotop . Sinar gamma juga digunakan untuk iradiasi makanan dan benih untuk sterilisasi, dan dalam pengobatan mereka digunakan dalam terapi radiasi kanker dan beberapa jenis pencitraan diagnostik seperti PET scan . Panjang gelombang sinar gamma dapat diukur dengan akurasi yang tinggi dengan cara hamburan Compton.
Perhatikan bahwa tidak ada batas didefinisikan secara tegas antara band dari spektrum elektromagnetik. Radiasi dari beberapa jenis memiliki campuran sifat-sifat mereka dalam dua daerah spektrum.Misalnya, lampu merah menyerupai radiasi inframerah karena dapat beresonansi beberapa ikatan kimia.